Construction of Volatility Surface for
Commodity Futures

Qimou Su

Director of Quant and Risk
SciComp Inc.



Introduction
e0

Market Implied Volatility

@ We see smiles everywhere: EQ, FX, IR, Commodity...
Implied volatility vs maturity and log moneyness
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Figure: Implied volatilities from crude oil market
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Market Implied Volatility

@ We see smiles everywhere: EQ, FX, IR, Commodity...
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Figure: Implied volatilities from crude oil market

@ How to incorporate this info into pricing and risk?
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@ Extract info from the implied volatility surface
@ Commodity market: two key effects in the surface:

e Samuelson effect (term structure of ATM volatility)
e Volatility Smiles (marginal distributions of the underlying futures)
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@ Extract info from the implied volatility surface
@ Commodity market: two key effects in the surface:

e Samuelson effect (term structure of ATM volatility)

e Volatility Smiles (marginal distributions of the underlying futures)
@ Our approach is to calibrate the two effects separately:

e A volatility model to calibrate the term structure
e Local volatility model to interpolate the smiles
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Model Overview

@ Extract info from the implied volatility surface
@ Commodity market: two key effects in the surface:
e Samuelson effect (term structure of ATM volatility)
o Volatility Smiles (marginal distributions of the underlying futures)
@ Our approach is to calibrate the two effects separately:
e A volatility model to calibrate the term structure
e Local volatility model to interpolate the smiles
@ A market modeling approach:

e Direct modeling of the forward prices (market observable)
@ Use copula to recover the join distribution for pricing and risk
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Volatility Term Structure Calibration

@ How to calibrate the volatility term structure?
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Volatility Term Structure Calibration

@ How to calibrate the volatility term structure?
@ Log-normal framework:

dF(t,T;) = o(t, T))F(t, T;)dWi(t), t<T; (1)

fori=1,---.,n
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Volatility Term Structure Calibration

@ How to calibrate the volatility term structure?
@ Log-normal framework:

dF(ta Tl) = U(ta Ti)F(ta T,)dW,(t), tS Ti7 (1)

fori=1,---,n
@ The initial forward curve is an exogenous market input
@ The correlation p;(t) can be endogenous or exogenous
@ The instantaneous volatility o(z, T) is a function of time ¢
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Volatility Term Structure Calibration

@ How to calibrate the volatility term structure?
@ Log-normal framework:

dF(ta Tl) = U(ta Ti)F(ta T,)dW,(t), tS Ti7 (1)

fori=1,---,n
@ The initial forward curve is an exogenous market input
@ The correlation p;(t) can be endogenous or exogenous
@ The instantaneous volatility o(z, T) is a function of time ¢
@ Calibration: specify a volatility model o (1, T)
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Log-Normal Model: Examples

@ Schwartz-Smith model (2000):
o Volatility

o (1,T) = ove T 4 2pyyoxaye "1™

@ Correlation

efn(Tfr)

dW(T) = UXT,T)

o(t,T)

1
dWx(Z) =+ (Ty*dWy(l)
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Log-Normal Model: Examples

@ Schwartz-Smith model (2000):
o Volatility

Uz(t7 T) = 0)2(672”“7’) + 2pxyaxayefﬁ(T7t) + ot

@ Correlation

e—h:(T—[)

dex([) + UY#dWY(l)

dW(t) = Oy 0’([ T)

@ Gabillon model (1991):
o Volatility

2
Uz(t, T) = Ugc—zx(r—z) + 2ps10501, (e—h-,(r—/) B e-m(r-;)) + U% (1 o e—H,(T—I))

@ Correlation
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Calibrated Results

@ The model-implied volatility:

1 T
(7’710(1(7-7 T) - - / 0-2(’3 T)dt; T S T (2)
0

T .
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Calibrated Results

@ The model-implied volatility:

1 T
UmOd(Ta T) = 7\/(; 0'2(ta T)dta T<T (2)

T

@ Gabillon model: k = 0.37, ps, = —0.29, 05 = 0.41, o, = 0.29

Gabillon implied volatiity vs maturity

Figure: Volatility term structure (ATM)
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Market Approach: Exogenous Correlation

@ Forward model: flexibility to model correlation and volatility
@ A correlation model given by Ronn (2009):

pij = e PIT=Til  (1 — =PIl Tilygma/ min(TT) (g > 0) (3)

@ Nice properties:

-] ‘p,j| < 1 andpii =1

e p; is decreasing with |T; — Tj|

@ pj; increases with min(7;, T;) and limz, 1, 0 pjj = 1
@ Correlation: calibrated to historical data and adjustment
@ Term structure: humped-shape volatility model
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Market Approach: Exogenous Correlation

@ Forward model: flexibility to model correlation and volatility
@ A correlation model given by Ronn (2009):

pij = e bITi=Til (1-— efb\T,fT,\)efa/ min(7;,Ty) (a,b > 0) (3)

@ Nice properties:

o ‘p,-,‘| <1 and pPii = 1

@ p; is decreasing with |7; — Tj|

@ pj; increases with min(7;, 7;) and limz, 7,00 pij = 1
@ Correlation: calibrated to historical data and adjustment
@ Term structure: humped-shape volatility model
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Market Approach: Exogenous Correlation

@ Forward model: flexibility to model correlation and volatility
@ A correlation model given by Ronn (2009):

pij = e PIT=Til  (1 — =PIl Tilygma/ min(TT) (g > 0) (3)

@ Nice properties:

-] ‘p,j| < 1 andpii =1

e p; is decreasing with |T; — Tj|

@ pj; increases with min(7;, T;) and limz, 1, 0 pjj = 1
@ Correlation: calibrated to historical data and adjustment
@ Term structure: humped-shape volatility model



Term Structure
0000e

Humped-Shape Term Structure

@ Volatility model:

o(t,T) = [a(T — 1) + cle™®T=) 4 (4)
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Humped-Shape Term Structure

@ Volatility model:
o(t,T) = [a(T — 1) + cle™®T) 4 (4)

@ Much better fit: a = 1.10, b =3.38, b = 0.13, d = 0.21

Calibrated implied volatiity vs maturity

Figure: Volatility term structure (ATM)
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Distribution Surface

@ Marginal distribution can be calculated from call price:

. 0
(1, K) :=P(F(r,T) < K) =1+ a—KC(T, K) (5)

@ How to construct the surfaces C(¢,K;7,T) fort < 7 < T?

@ The main problem is lack of market data:

e Option quotes are only available for discrete strikes
e Usually only one volatility smile is available per forward contract
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Distribution Surface

@ Marginal distribution can be calculated from call price:

V(7. K) = BF(7,T) < K) = 1+ 3-C(r. K) 5)
@ How to construct the surfaces C(¢,K;7,T) forr < 7 < T?
@ The main problem is lack of market data:

e Option quotes are only available for discrete strikes
e Usually only one volatility smile is available per forward contract
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Distribution Surface

@ Marginal distribution can be calculated from call price:

~ 0
TZ}(TvK) = ]P)(F(T’ T) < K) =1+ 67KC(T’ K) (5)
@ How to construct the surfaces C(¢,K;7,T) fort < 7 < T?
@ The main problem is lack of market data:
e Option quotes are only available for discrete strikes
e Usually only one volatility smile is available per forward contract
@ Traditional method: SVI/SABR/Heston

e Fit each slice to some volatility model separately, then
e Interpolate the resulted curves in the time dimension
e Potential issues: accuracy, stability and arbitrage
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Distribution Surface

@ Marginal distribution can be calculated from call price:

- 0
(1, K) :=P(F(1,T) < K) = 1+6?C(T’K) (5)
@ How to construct the surfaces C(¢,K;7,T) fort < 7 < T?
@ The main problem is lack of market data:
e Option quotes are only available for discrete strikes
e Usually only one volatility smile is available per forward contract
@ Traditional method: SVI/SABR/Heston

o Fit each slice to some volatility model separately, then
o Interpolate the resulted curves in the time dimension
o Potential issues: accuracy, stability and arbitrage

@ New alternative: local volatility model

@ Apply the Dupire equation to perform the interpolation
e Andreasen-Huge (2011): local volatility surface in FX market
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Local Volatility Model

@ Imagine a local volatility model:

AF(t,T) = 010 (t, F; T)F(t, T)dW(t), (1 <T) (6)
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Local Volatility Model

@ Imagine a local volatility model:
dF(t,T) = 01pc(t, F; T)F(t, T)dW(z), (t+<T) (6)

@ The Dupire equation:

2

) 1, , 0 .
077_C(7—, K, T) = EO—IOC(T.’ K, T)K @C(T., K, T) (7)

@ In terms of forward log-moneyness x := In(K/Fr):

2

EC(T,X; T) = l01200(7',)6; T) [
or

; Pewxn e

2 Ox
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Local Volatility Model

@ Imagine a local volatility model:
dF(t,T) = 01pc(t, F; T)F(t, T)dW(z), (t+<T) (6)

@ The Dupire equation:

2

0 O ) , O .
EC(T, K, T) = EO'IOC(T, K, T)K @C(T, K, T) (7)

@ In terms of forward log-moneyness x := In(K/F7):

0 1 0? 0
—C(r,x;T) = =02 (1,5, T) | =— — — xT
S CrnT) = gt () | - ] cont) @
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Option Prices on Discrete Expiries

@ A set of forward maturities: 0 =Ty, <71 < --- < T,
@ Option expiries: 0 =y <7 < --- <7, (; < T)
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Option Prices on Discrete Expiries

@ A set of forward maturities: 0 =Ty < T) < --- < T,
@ Optionexpiries: 0= <7 < <7, (1; < Ty)
@ Now fix a forward maturity T;:
@ Given local volatility ¥;;(x) := oy, (75,x; T;) constantin ¢ € [1;_1, 7]
@ Construct the call prices for all option expiries by solving:

1 ”? 0

{1 - gﬁﬁﬂ?j(@ (W - a}()] C(7,x,Ty) = C(1j—1,::Ti) - (9)
with C(0,x;T;) = F(0,T;))(1 — &)™, (1 <j<i<n)

@ Fully implicit FD scheme for the Dupire PDE

@ One-step Tri-diagonal solver for each option expiry = Fast,
Andreasen and Huge (2011)
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Option Prices on Discrete Expiries

@ A set of forward maturities: 0 =Ty < Ty, < --- < T,

@ Option expiries: 0 =1y <71 < -+ <7 (1; < T})

@ Now fix a forward maturity T;:

@ Given local volatility ¥;;(x) := oy (75,x; T;) constantin r € [7;_1, 7]
@ Construct the call prices for all option expiries by solving:

1. 2?0
{l - EATJ%(X) <0x2 — dx)

with C(0,x; 7;) = F(0,T;)(1 — &))", (1 <j < i <n)
@ Fully implicit FD scheme for the Dupire PDE

@ One-step Tri-diagonal solver for each option expiry = Fast,
Andreasen and Huge (2011)

C(Tjﬂﬁ T;) = C(ijlyx; T;) (9)
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Option Prices on Discrete Expiries

@ A set of forward maturities: 0 =Ty < T < --- < T,
@ Optionexpiries: 0= <7 < <7, (1; < Ty)
@ Now fix a forward maturity T;:
@ Given local volatility ¥;;(x) := oy (75,x; T;) constantin r € [7;_1, 7]
@ Construct the call prices for all option expiries by solving:

1 > 0

{1 - A7) (W - a}()] C(rxT) = Cr-1,5T) - (9)
with C(0,x;T;) = F(0,T;))(1 — &)™, (1 <j<i<n)

@ Fully implicit FD scheme for the Dupire PDE

@ One-step Tri-diagonal solver for each option expiry = Fast,
Andreasen and Huge (2011)
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What are the parameters v;;(x)?

@ Calibrate ;(x) to market quotes
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What are the parameters v;;(x)?

@ Calibrate ;(x) to market quotes
@ Market quotes are limited: one smile per forward maturity T;
@ How to get data for the previous option expiries 7;, (j < i)?
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What are the parameters v;;(x)?

Calibrate v;;(x) to market quotes

Market quotes are limited: one smile per forward maturity T;
How to get data for the previous option expiries 7, (j < i)?
Use the calibrated term structure (ATM) scale the smiles at 7;:

Timp (Tj 0 Tl)

N = = (10)
! Ui/111)(777 0; Tj)
@ Define a volatility smile for option expiries 7; by scaling:
O'im[)('rj-,x;Ti) = /\ijgimp(Tjax; TJ) (11)

This makes the surface consistent with the term structure
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What are the parameters v;;(x)?

@ Calibrate ¥;(x) to market quotes

@ Market quotes are limited: one smile per forward maturity T;

@ How to get data for the previous option expiries 7;, (j < i)?

@ Use the calibrated term structure (ATM) scale the smiles at 7;:

A O'imP(Tj»O; T;) _ OTj Uz(l, T;)dt (10)
T oinp(7,0:T)) Jo o2(t, T)at

Define a volatility smile for option expiries 7; by scaling:
O—imp(Tj’x; Tt) = /\ija_imp(’rjax; Tj) (1 1)

This makes the surface consistent with the term structure
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Smile Scaling: Example

@ Consider the forward with maturity 7 = 4.93

Implied volatiity vs maturity and log moneyness Implied volatly vs maturity and log moneyness

0 log moneyness O log moneyness

maturty

5 -05 5 05

(a) Market Volatility (b) Scaled Volatility
@ Remove most of the Samuelson effect
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Calibration ¥;j(x)

@ Discretize the local volatility function ;(x):
e For a fixed maturity-expiry pair (i,7), let 9;(xijx) = i
e Define the function 9;(x) through interpolation:

;(x) = /1({xi,‘/<, Oiji }1\)

@ Solve the optimization problem:

~ 2
nél}l; [C(Tj7xijk§ T;, Ox) — C(7j, X T")} (12)

@ Calibrated local volatility:

I5(x) = h({xt’jk7 ai}k'k}k)
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Calibration ¥;j(x)

@ Discretize the local volatility function ;(x):
o For a fixed maturity-expiry pair (i,7), let 9;(xijx) = O
e Define the function 9;(x) through interpolation:

0y5(x) = h({xix, O },)

@ Solve the optimization problem:
N 2
n(])l/n ; {C(T/,X(/k§ T, Oyx) — C(75, Xy Ti)} (12)

@ Calibrated local volatility:

I5(x) = h({xijk7 ai}k'k}k)
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Calibration ¥;j(x)

@ Discretize the local volatility function ;(x):
o For a fixed maturity-expiry pair (i,7), let 9;(xijx) = O
e Define the function 9;(x) through interpolation:

0y5(x) = h({xix, O },)

@ Solve the optimization problem:

~ 2
nél}l; [C(Tj7xijk§ T;, Ox) — C(7j, X T")} (12)

@ Calibrated local volatility:

19;()() = h({xijka 9;/\}/()



Marginal Distribution

00000080000

Calibration results

@ Calibrated ¥;(x) and pricing errors (maturity 7T = 4.93)

Calibrated theta vs expiry and logmon Calibration: pricing error vs expiry and logmon

pricing error
'

5 -05

logmon

logmon
expiry expiry

(c) Calibrated theta (d) Pricing errors

@ Underlying forward price: $89.15
@ The RMSE of call price: $3.3e-4 (5-year options)
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Fill the Gaps between Options Expiries

@ Use the calibrated local volatility to interpolate the intermediate
option prices att € (7,1, 7))

@ Again, by solving the PDE

1 ) o? 0
1-— 5([ — 7}71)?911()6) (6;62 — ax>:| C‘(t,)(f7 Tl) = C(Tj,hx;n),

fori <j<i<n

@ This is the same PDE as in the calibration step with (7, — 7_)
replaced by (r — 7_1)

@ No optimization involved: simple one-step tri-diagonal solver
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Fill the Gaps between Options Expiries

@ Use the calibrated local volatility to interpolate the intermediate
option prices atr € (7,1, 75)

@ Again, by solving the PDE

1 5 ? 0
1= 5= 5080 (4 - 1) | Cex ) = o7,

for1 <j<i<n

@ This is the same PDE as in the calibration step with (7, — 77_1)
replaced by (r — 7;_)

@ No optimization involved: simple one-step tri-diagonal solver



Marginal Distribution
0000000 e000

Fill the Gaps between Options Expiries

@ Use the calibrated local volatility to interpolate the intermediate
option prices atr € (7,1, 75)

@ Again, by solving the PDE

1 ) o? 0
1-— 5([ — 7}71)?911()6) (6;62 — ax>:| C‘(t,)(f7 Tl) = C(Tj,hx;n),

fori <j<i<n

@ This is the same PDE as in the calibration step with (7, — 7_)
replaced by (r — 7_1)

@ No optimization involved: simple one-step tri-diagonal solver



Marginal Distribution
00000000800

Price Surface = Distribution Surface

@ Marginal distribution surface: 9 (r,K) = 1 + % C(r, K)

Interpolated option price vs logmon and expiry Merginal distrbution vs logmon and expiry

7 h

option price

0 3

(e) Interpolated call option prices (f) Marginal distribution surface

@ One surface for each forward contract (maturity 7 = 4.93)
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Local Volatility Surface

@ Local volatility surface and pricing errors (maturity 7 = 4.93)

Locel voletity vs logmon end expiry Pricing error: impvol vs expiy and logmon

local volatilty
P

logmon

(h) Pricing errors

(g) Local volatility surface

@ The RMSE of ImpVol = 1.6 bps
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Pricing Errors

@ Re-price the options using the imaginary local volatility surfaces
@ Calculate the implied volatilities and pricing errors (vs market)
@ The resulted RMSE:

Expiry (y) | 0.08 | 0.16 | 0.25 | 0.33 | 0.42 | 0.50
RMSE (bp) | 20 | 29 | 26 | 22 | 1.8 | 1.8
Expiry (y) | 058 | 0.67 | 0.75 | 0.91 | 1.17 | 1.42
RMSE (bp) | 1.7 | 1.4 | 1.8 | 15 | 1.6 | 23
Expiry (y) | 1.92 | 2.41 | 2.92 | 3.92 | 493
RMSE (bp) | 22 | 20 | 24 | 26 | 1.6

Table: The RMSE of implied volatility
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Pricing Errors

@ Re-price the options using the imaginary local volatility surfaces
@ Calculate the implied volatilities and pricing errors (vs market)
@ The resulted RMSE:

Expiry (y) | 0.08 | 0.16 | 0.25 | 0.33 | 0.42 | 0.50
RMSE (bp) | 20 | 29 | 26 | 22 | 1.8 | 1.8
Expiry (y) | 0.58 | 0.67 | 0.75 | 0.91 | 1.17 | 1.42
RMSE (bp) | 1.7 | 1.4 | 1.8 | 15 | 1.6 | 23

Expiry (y) | 1.92 | 2.41 | 2.92 | 3.92 | 4.93
RMSE (bp) | 22 | 20 | 24 | 26 | 1.6

Table: The RMSE of implied volatility



Joint Distribution
©00000

Log-normal Distribution

@ How to obtain the joint distribution for pricing and risk?

@ Log-normal model: at time 7, simulate the forward prices
F(t,Ty),--- ,F(t,T,) from a log-normal model
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Log-normal Distribution

@ How to obtain the joint distribution for pricing and risk?

@ Log-normal model: at time #, simulate the forward prices
F(t,T,),--- ,F(t,T,) from a log-normal model

@ Define random variable:

Zi(t) = In(F(z, T,)/i;g(t);l,))) — pu(t,Ty)

where

1 ' 1/2
wu(t, T) = 75/0 o*(s,T)ds and v(t,T) = (A JZ(S,T)ds>

@ The random variables are joint Normal:

(Zl(t)7 t ’Zn(t)) ~ N(O7 E)
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Log-normal Distribution

@ How to obtain the joint distribution for pricing and risk?

@ Log-normal model: at time #, simulate the forward prices
F(t,T,),--- ,F(t,T,) from a log-normal model

@ Define random variable:

Z(r) = DEC Ti)/ig?,;t))) — u(t,T;)

where

e T) = _% /010'2(5, T)ds and v(t,T)= (/Ot az(s,T)ds>l/2

@ The random variables are joint Normal:

(Zl (I)v T sZn(t)) ~ N(Ov Z)
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Gaussian Copula

@ The normal variable Z;(r) can be transformed to a uniform:
Ui(t) = ®(Zi(r)), (i=1,---,n)

where @(-) is a normal CDF
@ The joint distribution of the uniforms define a copula function:

cur, - un) == Fu ), vy (U1, -+ 5 )

which defines a joint distribution with the “skewed” margins
@ This can be done by the following transform

Zi(1) = &; ' (1,Uy(1)) = &' (1, 2(Zi(1)))

where ®,(1, z) is the marginal distribution in the previous secton
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Gaussian Copula

@ The normal variable Z;(¢) can be transformed to a uniform:

where &(-) is a normal CDF
@ The joint distribution of the uniforms define a copula function:

c(ur, -+ ) = Fy ... .u, o) (U1, -+ 5 )

which defines a joint distribution with the “skewed” margins
@ This can be done by the following transform

Zi(1) = &; ' (1,Uy(1)) = &' (1, 2(Zi(1)))

where ®,(1, z) is the marginal distribution in the previous secton
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Gaussian Copula

@ The normal variable Z;(¢) can be transformed to a uniform:

where &(-) is a normal CDF
@ The joint distribution of the uniforms define a copula function:

C(ula T 7”11) = FU](I),m LU (1) (ulv e ,Lln)

which defines a joint distribution with the “skewed” margins
@ This can be done by the following transform

Zi(1) = &7 (1, Ui(1) = &7 (1, ®(Zi(1)))

where ®,(1, z) is the marginal distribution in the previous secton
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Simulation Algorithm

@ Input: the marginal distribution surface ;(z, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model

@ Transform the log-normal price F(t, T;) to a Normal variable Z;(r)

@ Compute the probability U;(¢) = ®(Z;(¢)) using Normal CDF ®(z)

@ Compute the “skewed” random variable Z(r) = @' (Ui(1)) using
the “skewed” margin ®;(r,z) = x:(t, pu(t, Ti) + zv(t, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm

@ Input: the marginal distribution surface (s, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model

@ Transform the log-normal price F(z,T;) to a Normal variable Z;(r)

@ Compute the probability U;(r) = ®(Z;(¢)) using Normal CDF &(z)

o Compute the “skewed” random variable Z;(1) = &; ' (Ui(r)) using
the “skewed” margin ®;(r,z) = x:(t, pu(t, Ti) + zv(t, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm

@ Input: the marginal distribution surface (s, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model

@ Transform the log-normal price F(t, T;) to a Normal variable Z;(r)

@ Compute the probability U;(r) = ®(Z;(¢)) using Normal CDF &(z)

o Compute the “skewed” random variable Z;(1) = &; ' (Ui(r)) using
the “skewed” margin ®;(r,z) = x:(t, pu(t, Ti) + zv(t, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm

@ Input: the marginal distribution surface (s, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model

@ Transform the log-normal price F(z,T;) to a Normal variable Z;(r)

@ Compute the probability U;(r) = ®(Z;(¢)) using Normal CDF ®(z)

o Compute the “skewed” random variable Z;(1) = &; ' (Ui(r)) using
the “skewed” margin ®;(r,z) = x:(t, pu(t, Ti) + zv(t, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm

@ Input: the marginal distribution surface (s, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model

@ Transform the log-normal price F(z,T;) to a Normal variable Z;(r)

@ Compute the probability U;(r) = ®(Z;(¢)) using Normal CDF &(z)

@ Compute the “skewed” random variable Z;(1) = ;' (Ui(r)) using
the “skewed” margin @;(¢,z) = (¢, u(t, T;) + zv(2, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm

@ Input: the marginal distribution surface (s, z)

@ Output: the “skewed” forward price F(t, T;)

@ Generate forward price F(z, T;) from a log-normal model
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@ Recover the “skewed” forward price F(t, T;) using formula
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@ Use F(1,T;) to calculate price and risk
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Simulation Algorithm
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the “skewed” margin ®;(r,z) = x:(t, pu(t, Ti) + zv(t, T))

@ Recover the “skewed” forward price F(t, T;) using formula

F(t,T;) = F(0,T;) exp { u(t, T;) + v(t,T;)Zi(t) }

@ Use F(1,T;) to calculate price and risk
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Simulation Results

@ Re-price the options using MC simulation
@ Calculate implied volatility (total variance) vs market quotes

Implied volatiity vs maturity and log moneyness Total variance vs log moneyness
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Simulation Results, cont.
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@ Individual smiles: market vs model (from MC simulation)
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Thank you !
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