Construction of Volatility Surface for Commodity Futures

Qimou Su

Director of Quant and Risk SciComp Inc.

Market Implied Volatility

• We see smiles everywhere: EQ, FX, IR, Commodity...

Figure: Implied volatilities from crude oil market

Market Implied Volatility

We see smiles everywhere: EQ, FX, IR, Commodity...

Figure: Implied volatilities from crude oil market

• How to incorporate this info into pricing and risk?

Model Overview

- Extract info from the implied volatility surface
- Commodity market: two key effects in the surface:
 - Samuelson effect (term structure of ATM volatility)
 - Volatility Smiles (marginal distributions of the underlying futures)

Model Overview

- Extract info from the implied volatility surface
- Commodity market: two key effects in the surface:
 - Samuelson effect (term structure of ATM volatility)
 - Volatility Smiles (marginal distributions of the underlying futures)
- Our approach is to calibrate the two effects separately:
 - A volatility model to calibrate the term structure
 - Local volatility model to interpolate the smiles

Model Overview

- Extract info from the implied volatility surface
- Commodity market: two key effects in the surface:
 - Samuelson effect (term structure of ATM volatility)
 - Volatility Smiles (marginal distributions of the underlying futures)
- Our approach is to calibrate the two effects separately:
 - A volatility model to calibrate the term structure
 - Local volatility model to interpolate the smiles
- A market modeling approach:
 - Direct modeling of the forward prices (market observable)
 - Use copula to recover the join distribution for pricing and risk

• How to calibrate the volatility term structure?

- How to calibrate the volatility term structure?
- Log-normal framework:

$$dF(t,T_i) = \sigma(t,T_i)F(t,T_i)dW_i(t), \quad t \le T_i, \tag{1}$$

for
$$i = 1, \dots, n$$

- How to calibrate the volatility term structure?
- Log-normal framework:

$$dF(t,T_i) = \sigma(t,T_i)F(t,T_i)dW_i(t), \quad t \le T_i, \tag{1}$$

for $i = 1, \dots, n$

- The initial forward curve is an exogenous market input
- The correlation $\rho_{ii}(t)$ can be endogenous or exogenous
- The instantaneous volatility $\sigma(t,T)$ is a function of time t

- How to calibrate the volatility term structure?
- Log-normal framework:

$$dF(t,T_i) = \sigma(t,T_i)F(t,T_i)dW_i(t), \quad t \le T_i, \tag{1}$$

for $i = 1, \dots, n$

- The initial forward curve is an exogenous market input
- The correlation $\rho_{ii}(t)$ can be endogenous or exogenous
- The instantaneous volatility $\sigma(t,T)$ is a function of time t
- Calibration: specify a volatility model $\sigma(t, T)$

Log-Normal Model: Examples

- Schwartz-Smith model (2000):
 - Volatility

$$\sigma^{2}(t,T) = \sigma_{X}^{2}e^{-2\kappa(T-t)} + 2\rho_{XY}\sigma_{X}\sigma_{Y}e^{-\kappa(T-t)} + \sigma_{Y}^{2}$$

Correlation

$$dW(t) = \sigma_X \frac{e^{-\kappa(T-t)}}{\sigma(t,T)} dW_X(t) + \sigma_Y \frac{1}{\sigma(t,T)} dW_Y(t)$$

Log-Normal Model: Examples

- Schwartz-Smith model (2000):
 - Volatility

$$\sigma^{2}(t,T) = \sigma_{X}^{2}e^{-2\kappa(T-t)} + 2\rho_{XY}\sigma_{X}\sigma_{Y}e^{-\kappa(T-t)} + \sigma_{Y}^{2}$$

Correlation

$$dW(t) = \sigma_X \frac{e^{-\kappa(T-t)}}{\sigma(t,T)} dW_X(t) + \sigma_Y \frac{1}{\sigma(t,T)} dW_Y(t)$$

- Gabillon model (1991):
 - Volatility

$$\sigma^{2}(t,T) = \sigma_{S}^{2}e^{-2\kappa(T-t)} + 2\rho_{SL}\sigma_{S}\sigma_{L}\left(e^{-\kappa(T-t)} - e^{-2\kappa(T-t)}\right) + \sigma_{L}^{2}\left(1 - e^{-\kappa(T-t)}\right)^{2}$$

Correlation

$$dW(t) = \sigma_S \frac{e^{-\kappa(T-t)}}{\sigma(t,T)} dW_S(t) + \sigma_L \frac{1 - e^{-\kappa(T-t)}}{\sigma(t,T)} dW_L(t)$$

Calibrated Results

The model-implied volatility:

$$\sigma_{mod}(\tau, T) = \sqrt{\frac{1}{\tau} \int_0^{\tau} \sigma^2(t, T) dt}, \quad \tau \le T$$
 (2)

Calibrated Results

• The model-implied volatility:

$$\sigma_{mod}(\tau, T) = \sqrt{\frac{1}{\tau} \int_0^{\tau} \sigma^2(t, T) dt}, \quad \tau \le T$$
 (2)

• Gabillon model: $\kappa = 0.37$, $\rho_{SL} = -0.29$, $\sigma_{S} = 0.41$, $\sigma_{L} = 0.29$

Figure: Volatility term structure (ATM)

Market Approach: Exogenous Correlation

- Forward model: flexibility to model correlation and volatility
- A correlation model given by Ronn (2009):

$$\rho_{ij} = e^{-b|T_i - T_j|} + (1 - e^{-b|T_i - T_j|})e^{-a/\min(T_i, T_j)}, \quad (a, b > 0)$$
 (3)

- Nice properties:
 - $|\rho_{ii}| \leq 1$ and $\rho_{ii} = 1$
 - ρ_{ij} is decreasing with $|T_i T_j|$
 - ρ_{ij} increases with $\min(T_i, T_j)$ and $\lim_{T_i, T_i \to \infty} \rho_{ij} = 1$
- Correlation: calibrated to historical data and adjustment
- Term structure: humped-shape volatility model

Market Approach: Exogenous Correlation

- Forward model: flexibility to model correlation and volatility
- A correlation model given by Ronn (2009):

$$\rho_{ij} = e^{-b|T_i - T_j|} + (1 - e^{-b|T_i - T_j|})e^{-a/\min(T_i, T_j)}, \quad (a, b > 0)$$
 (3)

- Nice properties:
 - $|\rho_{ii}| \leq 1$ and $\rho_{ii} = 1$
 - ρ_{ij} is decreasing with $|T_i T_j|$
 - ρ_{ij} increases with $\min(T_i, T_j)$ and $\lim_{T_i, T_i \to \infty} \rho_{ij} = 1$
- Correlation: calibrated to historical data and adjustment
- Term structure: humped-shape volatility model

Market Approach: Exogenous Correlation

- Forward model: flexibility to model correlation and volatility
- A correlation model given by Ronn (2009):

$$\rho_{ij} = e^{-b|T_i - T_j|} + (1 - e^{-b|T_i - T_j|})e^{-a/\min(T_i, T_j)}, \quad (a, b > 0)$$
 (3)

- Nice properties:
 - $|\rho_{ii}| \leq 1$ and $\rho_{ii} = 1$
 - ρ_{ij} is decreasing with $|T_i T_j|$
 - ρ_{ij} increases with $\min(T_i, T_j)$ and $\lim_{T_i, T_i \to \infty} \rho_{ij} = 1$
- Correlation: calibrated to historical data and adjustment
- Term structure: humped-shape volatility model

Humped-Shape Term Structure

Volatility model:

$$\sigma(t,T) = [a(T-t) + c]e^{-b(T-t)} + d$$
 (4)

Humped-Shape Term Structure

Volatility model:

$$\sigma(t,T) = [a(T-t) + c]e^{-b(T-t)} + d$$
(4)

• Much better fit: a = 1.10, b = 3.38, b = 0.13, d = 0.21

Figure: Volatility term structure (ATM)

• Marginal distribution can be calculated from call price:

$$\psi(\tau, K) := \mathbb{P}(\tilde{F}(\tau, T) < K) = 1 + \frac{\partial}{\partial K} C(\tau, K)$$
 (5)

- How to construct the surfaces $C(t, K; \tau, T)$ for $t < \tau \le T$?
- The main problem is lack of market data:
 - Option quotes are only available for discrete strikes
 - Usually only one volatility smile is available per forward contract

• Marginal distribution can be calculated from call price:

$$\psi(\tau, K) := \mathbb{P}(\tilde{F}(\tau, T) < K) = 1 + \frac{\partial}{\partial K} C(\tau, K)$$
 (5)

- How to construct the surfaces $C(t, K; \tau, T)$ for $t < \tau \le T$?
- The main problem is lack of market data:
 - Option quotes are only available for discrete strikes
 - Usually only one volatility smile is available per forward contract

Marginal distribution can be calculated from call price:

$$\psi(\tau, K) := \mathbb{P}(\tilde{F}(\tau, T) < K) = 1 + \frac{\partial}{\partial K} C(\tau, K) \tag{5}$$

- How to construct the surfaces $C(t, K; \tau, T)$ for $t < \tau \le T$?
- The main problem is lack of market data:
 - Option quotes are only available for discrete strikes
 - Usually only one volatility smile is available per forward contract
- Traditional method: SVI/SABR/Heston
 - Fit each slice to some volatility model separately, then
 - Interpolate the resulted curves in the time dimension
 - Potential issues: accuracy, stability and arbitrage

Marginal distribution can be calculated from call price:

$$\psi(\tau, K) := \mathbb{P}(\tilde{F}(\tau, T) < K) = 1 + \frac{\partial}{\partial K} C(\tau, K)$$
 (5)

- How to construct the surfaces $C(t, K; \tau, T)$ for $t < \tau \le T$?
- The main problem is lack of market data:
 - Option quotes are only available for discrete strikes
 - Usually only one volatility smile is available per forward contract
- Traditional method: SVI/SABR/Heston
 - Fit each slice to some volatility model separately, then
 - Interpolate the resulted curves in the time dimension
 - Potential issues: accuracy, stability and arbitrage
- New alternative: local volatility model
 - Apply the Dupire equation to perform the interpolation
 - Andreasen-Huge (2011): local volatility surface in FX market

Local Volatility Model

• Imagine a local volatility model:

$$dF(t,T) = \sigma_{loc}(t,F;T)F(t,T)dW(t), \quad (t \le T)$$
(6)

Local Volatility Model

Imagine a local volatility model:

$$dF(t,T) = \sigma_{loc}(t,F;T)F(t,T)dW(t), \quad (t \le T)$$
(6)

• The Dupire equation:

$$\frac{\partial}{\partial \tau}C(\tau, K; T) = \frac{1}{2}\sigma_{loc}^2(\tau, K; T)K^2 \frac{\partial^2}{\partial K^2}C(\tau, K; T)$$
 (7)

• In terms of forward log-moneyness $x := \ln(K/F_T)$:

$$\frac{\partial}{\partial \tau}C(\tau, x; T) = \frac{1}{2}\sigma_{loc}^2(\tau, x; T) \left[\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial x} \right] C(\tau, x; T)$$
 (8)

Local Volatility Model

Imagine a local volatility model:

$$dF(t,T) = \sigma_{loc}(t,F;T)F(t,T)dW(t), \quad (t \le T)$$
(6)

• The Dupire equation:

$$\frac{\partial}{\partial \tau}C(\tau, K; T) = \frac{1}{2}\sigma_{loc}^2(\tau, K; T)K^2\frac{\partial^2}{\partial K^2}C(\tau, K; T)$$
 (7)

• In terms of forward log-moneyness $x := \ln(K/F_T)$:

$$\frac{\partial}{\partial \tau}C(\tau, x; T) = \frac{1}{2}\sigma_{loc}^2(\tau, x; T) \left[\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial x} \right] C(\tau, x; T)$$
 (8)

- A set of forward maturities: $0 = T_0 < T_1 < \cdots < T_n$
- Option expiries: $0 = \tau_0 < \tau_1 < \cdots < \tau_n \ (\tau_i \le T_i)$

- A set of forward maturities: $0 = T_0 < T_1 < \cdots < T_n$
- Option expiries: $0 = \tau_0 < \tau_1 < \cdots < \tau_n \ (\tau_i \le T_i)$
- Now fix a forward maturity T_i:
- Given local volatility $\vartheta_{ij}(x) := \sigma_{loc}(\tau_j, x; T_i)$ constant in $t \in [\tau_{j-1}, \tau_j]$
- Construct the call prices for all option expiries by solving:

$$\left[1 - \frac{1}{2}\Delta\tau_j\vartheta_{ij}^2(x)\left(\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial x}\right)\right]C(\tau_j, x; T_i) = C(\tau_{j-1}, x; T_i)$$
 (9)

with
$$C(0, x; T_i) = F(0, T_i)(1 - e^x)^+, (1 \le j \le i \le n)$$

- Fully implicit FD scheme for the Dupire PDE
- One-step Tri-diagonal solver for each option expiry ⇒ Fast, Andreasen and Huge (2011)

- A set of forward maturities: $0 = T_0 < T_1 < \cdots < T_n$
- Option expiries: $0 = \tau_0 < \tau_1 < \cdots < \tau_n \ (\tau_i \le T_i)$
- Now fix a forward maturity T_i:
- Given local volatility $\vartheta_{ij}(x) := \sigma_{loc}(\tau_j, x; T_i)$ constant in $t \in [\tau_{j-1}, \tau_j]$
- Construct the call prices for all option expiries by solving:

$$\left[1 - \frac{1}{2}\Delta\tau_j\vartheta_{ij}^2(x)\left(\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial x}\right)\right]C(\tau_j, x; T_i) = C(\tau_{j-1}, x; T_i)$$
 (9)

with
$$C(0, x; T_i) = F(0, T_i)(1 - e^x)^+, (1 \le j \le i \le n)$$

- Fully implicit FD scheme for the Dupire PDE
- One-step Tri-diagonal solver for each option expiry ⇒ Fast, Andreasen and Huge (2011)

- A set of forward maturities: $0 = T_0 < T_1 < \cdots < T_n$
- Option expiries: $0 = \tau_0 < \tau_1 < \cdots < \tau_n \ (\tau_i \le T_i)$
- Now fix a forward maturity T_i:
- Given local volatility $\vartheta_{ij}(x) := \sigma_{loc}(\tau_j, x; T_i)$ constant in $t \in [\tau_{j-1}, \tau_j]$
- Construct the call prices for all option expiries by solving:

$$\left[1 - \frac{1}{2}\Delta\tau_j\vartheta_{ij}^2(x)\left(\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial x}\right)\right]C(\tau_j, x; T_i) = C(\tau_{j-1}, x; T_i)$$
 (9)

with
$$C(0, x; T_i) = F(0, T_i)(1 - e^x)^+, (1 \le j \le i \le n)$$

- Fully implicit FD scheme for the Dupire PDE
- One-step Tri-diagonal solver for each option expiry ⇒ Fast, Andreasen and Huge (2011)

• Calibrate $\vartheta_{ij}(x)$ to market quotes

- Calibrate $\vartheta_{ij}(x)$ to market quotes
- Market quotes are limited: one smile per forward maturity T_i
- How to get data for the previous option expiries τ_j , (j < i)?

- Calibrate $\vartheta_{ij}(x)$ to market quotes
- Market quotes are limited: one smile per forward maturity T_i
- How to get data for the previous option expiries τ_j , (j < i)?
- Use the calibrated term structure (ATM) scale the smiles at T_i:

$$\lambda_{ij} := \frac{\sigma_{imp}(\tau_j, 0; T_i)}{\sigma_{imp}(\tau_j, 0; T_j)} = \sqrt{\frac{\int_0^{\tau_j} \sigma^2(t, T_i) dt}{\int_0^{\tau_j} \sigma^2(t, T_j) dt}}$$
(10)

• Define a volatility smile for option expiries τ_i by scaling:

$$\sigma_{imp}(\tau_i, x; T_i) = \lambda_{ij}\sigma_{imp}(\tau_i, x; T_i) \tag{11}$$

This makes the surface consistent with the term structure

- Calibrate $\vartheta_{ij}(x)$ to market quotes
- Market quotes are limited: one smile per forward maturity T_i
- How to get data for the previous option expiries τ_j , (j < i)?
- Use the calibrated term structure (ATM) scale the smiles at T_j :

$$\lambda_{ij} := \frac{\sigma_{imp}(\tau_j, 0; T_i)}{\sigma_{imp}(\tau_j, 0; T_j)} = \sqrt{\frac{\int_0^{\tau_j} \sigma^2(t, T_i) dt}{\int_0^{\tau_j} \sigma^2(t, T_j) dt}}$$
(10)

• Define a volatility smile for option expiries τ_i by scaling:

$$\sigma_{imp}(\tau_i, x; T_i) = \lambda_{ij}\sigma_{imp}(\tau_i, x; T_i)$$
(11)

• This makes the surface consistent with the term structure

Smile Scaling: Example

• Consider the forward with maturity T = 4.93

Remove most of the Samuelson effect

Calibration $\vartheta_{ij}(x)$

- Discretize the local volatility function $\vartheta_{ij}(x)$:
 - For a fixed maturity-expiry pair (i,j), let $\vartheta_{ii}(x_{iik}) = \theta_{iik}$
 - Define the function $\vartheta_{ij}(x)$ through interpolation:

$$\vartheta_{ij}(x) = h(\left\{x_{ijk}, \theta_{ijk}\right\}_k)$$

Solve the optimization problem:

$$\min_{\Theta_{ij}} \sum_{k} \left[C(\tau_j, x_{ijk}; T_i, \theta_{ijk}) - \hat{C}(\tau_j, x_{ijk}; T_i) \right]^2$$
 (12)

Calibrated local volatility:

$$\vartheta_{ij}^*(x) = h(\left\{x_{ijk}, \theta_{ijk}^*\right\}_k)$$

Calibration $\vartheta_{ij}(x)$

- Discretize the local volatility function $\vartheta_{ij}(x)$:
 - For a fixed maturity-expiry pair (i,j), let $\vartheta_{ij}(x_{ijk}) = \theta_{ijk}$
 - Define the function $\vartheta_{ij}(x)$ through interpolation:

$$\vartheta_{ij}(x) = h(\left\{x_{ijk}, \theta_{ijk}\right\}_k)$$

Solve the optimization problem:

$$\min_{\Theta_{ij}} \sum_{k} \left[C(\tau_j, x_{ijk}; T_i, \theta_{ijk}) - \hat{C}(\tau_j, x_{ijk}; T_i) \right]^2 \tag{12}$$

Calibrated local volatility:

$$\vartheta_{ij}^*(x) = h(\left\{x_{ijk}, \theta_{ijk}^*\right\}_k)$$

Calibration $\vartheta_{ij}(x)$

- Discretize the local volatility function $\vartheta_{ij}(x)$:
 - For a fixed maturity-expiry pair (i,j), let $\vartheta_{ij}(x_{ijk}) = \theta_{ijk}$
 - Define the function $\vartheta_{ij}(x)$ through interpolation:

$$\vartheta_{ij}(x) = h(\left\{x_{ijk}, \theta_{ijk}\right\}_k)$$

Solve the optimization problem:

$$\min_{\Theta_{ij}} \sum_{k} \left[C(\tau_j, x_{ijk}; T_i, \theta_{ijk}) - \hat{C}(\tau_j, x_{ijk}; T_i) \right]^2 \tag{12}$$

Calibrated local volatility:

$$\vartheta_{ij}^*(x) = h(\left\{x_{ijk}, \theta_{ijk}^*\right\}_k)$$

Calibration results

• Calibrated $\vartheta_{ij}(x)$ and pricing errors (maturity T=4.93)

Underlying forward price: \$89.15

• The RMSE of call price: \$3.3e-4 (5-year options)

Fill the Gaps between Options Expiries

- Use the calibrated local volatility to interpolate the intermediate option prices at $t \in (\tau_{j-1}, \tau_j)$
- Again, by solving the PDE

$$\left[1 - \frac{1}{2}(t - \tau_{j-1})\vartheta_{ij}^{2}(x)\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial}{\partial x}\right)\right]C(t, x; T_{i}) = C(\tau_{j-1}, x; T_{i}),$$

for
$$1 \le j \le i \le n$$

- This is the same PDE as in the calibration step with $(\tau_j \tau_{j-1})$ replaced by $(t \tau_{j-1})$
- No optimization involved: simple one-step tri-diagonal solver

Fill the Gaps between Options Expiries

- Use the calibrated local volatility to interpolate the intermediate option prices at $t \in (\tau_{i-1}, \tau_i)$
- Again, by solving the PDE

$$\left[1 - \frac{1}{2}(t - \tau_{j-1})\vartheta_{ij}^{2}(x)\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial}{\partial x}\right)\right]C(t, x; T_{i}) = C(\tau_{j-1}, x; T_{i}),$$

for
$$1 \le j \le i \le n$$

- This is the same PDE as in the calibration step with $(\tau_j \tau_{j-1})$ replaced by $(t \tau_{j-1})$
- No optimization involved: simple one-step tri-diagonal solver

Fill the Gaps between Options Expiries

- Use the calibrated local volatility to interpolate the intermediate option prices at $t \in (\tau_{j-1}, \tau_j)$
- Again, by solving the PDE

$$\left[1 - \frac{1}{2}(t - \tau_{j-1})\vartheta_{ij}^{2}(x)\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial}{\partial x}\right)\right]C(t, x; T_{i}) = C(\tau_{j-1}, x; T_{i}),$$

for
$$1 \le j \le i \le n$$

- This is the same PDE as in the calibration step with $(\tau_j \tau_{j-1})$ replaced by $(t \tau_{j-1})$
- No optimization involved: simple one-step tri-diagonal solver

Price Surface ⇒ Distribution Surface

• Marginal distribution surface: $\psi(\tau, K) = 1 + \frac{\partial}{\partial K} C(\tau, K)$

• One surface for each forward contract (maturity T = 4.93)

Local Volatility Surface

• Local volatility surface and pricing errors (maturity T = 4.93)

• The RMSE of ImpVol = 1.6 bps

Pricing Errors

- Re-price the options using the imaginary local volatility surfaces
- Calculate the implied volatilities and pricing errors (vs market)
- The resulted RMSE:

Expiry (y)	0.08	0.16	0.25	0.33	0.42	0.50
RMSE (bp)	2.0	2.9	2.6	2.2	1.8	1.8
Expiry (y)	0.58	0.67	0.75	0.91	1.17	1.42
RMSE (bp)	1.7	1.4	1.8	1.5	1.6	2.3
Expiry (y)	1.92	2.41	2.92	3.92	4.93	
RMSE (bp)	2.2	2.0	2.4	2.6	1.6	

Table: The RMSE of implied volatility

Pricing Errors

- Re-price the options using the imaginary local volatility surfaces
- Calculate the implied volatilities and pricing errors (vs market)
- The resulted RMSE:

Expiry (y)	0.08	0.16	0.25	0.33	0.42	0.50
RMSE (bp)	2.0	2.9	2.6	2.2	1.8	1.8
Expiry (y)	0.58	0.67	0.75	0.91	1.17	1.42
RMSE (bp)	1.7	1.4	1.8	1.5	1.6	2.3
Expiry (y)	1.92	2.41	2.92	3.92	4.93	
RMSE (bp)	2.2	2.0	2.4	2.6	1.6	

Table: The RMSE of implied volatility

Log-normal Distribution

- How to obtain the joint distribution for pricing and risk?
- Log-normal model: at time t, simulate the forward prices $F(t,T_1),\cdots,F(t,T_n)$ from a log-normal model

Log-normal Distribution

- How to obtain the joint distribution for pricing and risk?
- Log-normal model: at time t, simulate the forward prices $F(t, T_1), \dots, F(t, T_n)$ from a log-normal model
- Define random variable:

$$Z_i(t) := \frac{\ln(F(t, T_i)/F(0, T_i)) - \mu(t, T_i)}{\nu(t, T_i)}$$

where

$$\mu(t,T) = -\frac{1}{2} \int_0^t \sigma^2(s,T) ds$$
 and $\nu(t,T) = \left(\int_0^t \sigma^2(s,T) ds\right)^{1/2}$

• The random variables are joint Normal:

$$(Z_1(t), \cdots, Z_n(t)) \sim N(0, \Sigma)$$

Log-normal Distribution

- How to obtain the joint distribution for pricing and risk?
- Log-normal model: at time t, simulate the forward prices $F(t,T_1), \cdots, F(t,T_n)$ from a log-normal model
- Define random variable:

$$Z_i(t) := \frac{\ln(F(t, T_i)/F(0, T_i)) - \mu(t, T_i)}{\nu(t, T_i)}$$

where

$$\mu(t,T) = -\frac{1}{2} \int_0^t \sigma^2(s,T) ds \quad \text{and} \quad \nu(t,T) = \left(\int_0^t \sigma^2(s,T) ds \right)^{1/2}$$

• The random variables are joint Normal:

$$(Z_1(t),\cdots,Z_n(t))\sim N(0,\Sigma)$$

Gaussian Copula

• The normal variable $Z_i(t)$ can be transformed to a uniform:

$$U_i(t) = \Phi(Z_i(t)), \quad (i = 1, \dots, n)$$

where $\Phi(\cdot)$ is a normal CDF

• The joint distribution of the uniforms define a copula function:

$$c(u_1, \dots, u_n) := F_{U_1(t), \dots, U_n(t)}(u_1, \dots, u_n)$$

which defines a joint distribution with the "skewed" margins

This can be done by the following transform

$$\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(t, U_i(t)) = \tilde{\Phi}_i^{-1}(t, \Phi(Z_i(t)))$$

where $\tilde{\Phi}_i(t,z)$ is the marginal distribution in the previous secton

Gaussian Copula

• The normal variable $Z_i(t)$ can be transformed to a uniform:

$$U_i(t) = \Phi(Z_i(t)), \quad (i = 1, \dots, n)$$

where $\Phi(\cdot)$ is a normal CDF

The joint distribution of the uniforms define a copula function:

$$c(u_1, \dots, u_n) := F_{U_1(t), \dots, U_n(t)}(u_1, \dots, u_n)$$

which defines a joint distribution with the "skewed" margins

• This can be done by the following transform

$$\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(t, U_i(t)) = \tilde{\Phi}_i^{-1}(t, \Phi(Z_i(t)))$$

where $\tilde{\Phi}_i(t,z)$ is the marginal distribution in the previous secton

Gaussian Copula

• The normal variable $Z_i(t)$ can be transformed to a uniform:

$$U_i(t) = \Phi(Z_i(t)), \quad (i = 1, \dots, n)$$

where $\Phi(\cdot)$ is a normal CDF

• The joint distribution of the uniforms define a copula function:

$$c(u_1, \dots, u_n) := F_{U_1(t), \dots, U_n(t)}(u_1, \dots, u_n)$$

which defines a joint distribution with the "skewed" margins

• This can be done by the following transform

$$\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(t, U_i(t)) = \tilde{\Phi}_i^{-1}(t, \Phi(Z_i(t)))$$

where $\tilde{\Phi}_i(t,z)$ is the marginal distribution in the previous secton

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t,T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

- Input: the marginal distribution surface $\tilde{\Phi}_i(t,z)$
- Output: the "skewed" forward price $\tilde{F}(t, T_i)$
- Generate forward price $F(t, T_i)$ from a log-normal model
- Transform the log-normal price $F(t, T_i)$ to a Normal variable $Z_i(t)$
- Compute the probability $U_i(t) = \Phi(Z_i(t))$ using Normal CDF $\Phi(z)$
- Compute the "skewed" random variable $\tilde{Z}_i(t) = \tilde{\Phi}_i^{-1}(U_i(t))$ using the "skewed" margin $\tilde{\Phi}_i(t,z) = \chi_i(t,\mu(t,T_i) + z\nu(t,T_i))$
- Recover the "skewed" forward price $\tilde{F}(t,T_i)$ using formula

$$\tilde{F}(t, T_i) = F(0, T_i) \exp\left\{\mu(t, T_i) + \nu(t, T_i)\tilde{Z}_i(t)\right\}$$

Simulation Results

- Re-price the options using MC simulation
- Calculate implied volatility (total variance) vs market quotes

Simulation Results, cont.

• Individual smiles: market vs model (from MC simulation)

Thank you!

Technical Reference

- Qimou Su and Curt Randall, Putting Smiles Back to The Futures, Wilmott, September 2012
- Qimou Su and Curt Randall, Construction of Volatility Surface for Commodity Futures, Working paper, 2012